LazyJ: Seamless Lazy Evaluation in Java

Alessandro Warth
October 7, 2005

LazyJ! is a backward compatible extension to the Java programming language that allows programmers
to seamlessly tap into the power and expressiveness of lazy evaluation. It does so by extending Java’s type
system with lazy types. A variable of type lazy T (where T is any Java type) can hold a thunk which when
evaluated will yield a value of type T.

Other languages with strict semantics—including Scheme and O’Caml—provide support for lazy evalua-
tion through delay and force functions which can be used by programmers to achieve a “manual” form of
lazy evaluation. But programming using these functions can be quite onerous.

LazyJ’s raison d’étre is its novel type system which includes lazy and eager types, and provides coercions
between these types. Specifically, when the type checker finds an expression of a lazy type where an
expression of a non-lazy type is expected, it automatically forces that expression. Conversely, when the
type checker finds an expression of a non-lazy type where an expression of a lazy type is expected, it
automatically delays that expression. Thanks to these coercions, programmers can write lazy code without
ever having to worry about explicitly delaying or forceing expressions. In fact, LazyJ does not even provide
explicit delay and force operations. The only new piece of syntax it adds to Java is the lazy type modifier.
Consequently, LazyJ programs are a lot more readable and easier to understand than equivalent programs
written with explicit delay and force operations.

And now for a little taste of LazyJ... One important benefit of lazy evaluation is that it can be used to
describe infinite data structures. Given the following declarations

class Node
{ int data;
lazy Node next;
Node(int d, lazy Node n) { data=d; next=n; } }
Node intsFrom(int n) { return new Node(n, intsFrom(n+1)); }
Node filter(int n, Node 1)
{ if (1.data%)n==0) return filter(m, 1l.next);
else return new Node(l.data, filter(n, l.next)); }
Node sieve(Node 1) { return new Node(l.data, sieve(filter(l.data, l.next))); }
Node primes=sieve(intsFrom(2));
void printFirst(int n, Node 1)
{ if (n==0) return;
else { System.out.println(l.data); printFirst(n-1, l.next); } }

the call printFirst (1000, primes) will do exactly what it suggests. Note that the only uses of the lazy
keyword are in the declaration of the Node class. The rest of the code is written in a very straightforward
manner, implicitly using lazy evaluation whererever appropriate.

Thttp://www.cs.ucla.edu/ awarth/lazyj



