
LazyJ: Seamless Lazy Evaluation in Java

Alessandro Warth
Computer Science Department

University of California, Los Angeles
awarth@cs.ucla.edu

Abstract
LazyJ is a backward-compatible extension of the Java program-
ming language that allows programmers to seamlessly tap into the
power and expressiveness of lazy evaluation. It does so by extend-
ing Java’s type system with lazy types. A variable of type lazy T
(where T is any Java type) can hold a thunk which when evaluated
will yield a value of type T. The existence of coercions between
non-lazy and lazy types eliminates the need for explicit delay and
force operations.

In this paper, we introduce LazyJ with several motivating ex-
amples and formalize the semantics of the language with Feather-
weight LazyJ, an extension of Featherweight Java. We also describe
our implementation, which is built on top of the Polyglot extensible
compiler framework.

1. Introduction
While certain kinds of programs can be written with astound-
ing elegance and simplicity in languages with lazy (non-strict)
semantics—for example, Turner’s implementation of the sieve of
Eratosthenes using infinite lists in [11]—state-of-the-art implemen-
tations of lazy languages usually perform considerably worse than
those of eager (strict) languages. Therefore, it might be useful to
design programming languages that can conveniently support both
lazy and eager evaluation; that way, programmers may leverage the
strengths of both approaches.

Some languages with eager semantics like ML [8] and Scheme
[9] support a form of lazy evaluation through explicit delay and
force constructs. While these constructs afford programmers the
same amount of expressiveness as true lazy evaluation, using them
is nowhere as convenient as writing lazy programs in a language
with lazy semantics. Similarly, current support for eager evaluation
in lazy languages such as Haskell [3] is practically non-existent.

This paper explores a novel approach to adding support for
lazy evaluation to eager languages that is based on lazy types
and the implicit generation of delay and force operations. We
explore this idea in the context of LazyJ, an extension of the
Java programming language that supports this approach to lazy
evaluation. LazyJ extends Java with a lazy type qualifier which can
be used in conjunction with any Java type. A value of type lazy T
is a thunk which, when evaluated, will yield a value of type T.

The information provided by the types of LazyJ expressions
is enough to relieve programmers of the burden of explicitly
forceing and delaying expressions. When the compiler finds an
expression of a lazy type where an expression of a non-lazy type
is expected, it automatically forces that expression. Conversely,
when the compiler finds an expression of a non-lazy type where an
expression of a lazy type is expected, it automatically delays that
expression.

The rest of this paper is structured as follows. Section 2 intro-
duces LazyJ with a number of motivating examples. Section 3 de-

scribes our compilation strategy, which translates LazyJ programs
into semantically equivalent Java programs. Section 4 presents
Featherweight LazyJ (FLJ), a formal model of LazyJ based on
Featherweight Java [5]. Section 5 compares LazyJ with related
work. Section 6 identifies future work, and section 7 concludes.

2. LazyJ by example
Note: All of the examples shown here can be compiled and run
using our LazyJ implementation, available at
http://www.cs.ucla.edu/˜awarth/lazyj/lazyj.tar.gz.

class List {
int head;
lazy List tail;
List(int h, lazy List t) {
head=h;
tail=t;

}
}

Figure 1. Lazy lists in LazyJ.

Among the most important benefits of lazy evaluation is the
ability to construct and process infinite data structures. Figure 1
shows how we might represent infinite lists of integers in LazyJ.
Note that List is implemented in the same way we might imple-
ment ordinary linked lists, with one exception: the tail field is
declared to have type lazy List. This means that the value of a
List’s tail field is not actually the rest of the list, but instead a
“recipe” [4] for its computation.

lazy List intsFrom(int n) {
return new List(n, intsFrom(n+1));

}

Figure 2. A method that (lazily) builds an infinite list.

Figure 2 shows intsFrom, a method that uses our List class
to generate a list of all integers starting from n. The method’s
implementation is as simple as it could possibly be: to construct
a list of all integers starting from n, we build a cons cell whose
head is n, and whose tail is the list of all integers starting from
n+1. Note that the type of the expression being returned by this
method, new List(...) is List, which differs from the method’s
declared return type, lazy List. This causes the LazyJ compiler
to implicitly generate a delay operation that is applied to the
expression, which results in the method’s expected lazy behavior.

Now consider what happens when the expression
intsFrom(0).head is evaluated. The type of the receiver in
this expression—intsFrom(0)—is lazy List. LazyJ implicitly

forces receivers, and thus the body of intsFrom is evaluated,
yielding the value new List(0, intsFrom(1)). Finally, the re-
sult of accessing this object’s head field is 0. The implicit force
operation inserted by the compiler is a result of LazyJ’s typing re-
lation, which asserts that lazy types do not contain any methods.
Consequently, in order for this expression to typecheck the receiver
must be coerced to the List type. (Refer to section 4 for more
details on LazyJ’s typing rules.)

Because recursive and mutually-recursive variable declarations
are quite common in lazy programs, LazyJ permits the use of
forward- and self-references inside expressions that are used to
initialize lazy fields. As an example, consider the following field
declaration, which initializes field ones with an infinitely long list
of 1s:

lazy List ones=new List(1, ones);

(Forward- and self-references to local variables are not allowed for
implementation-specific reasons; see section 3 for details.)

Lazy lists can be used to implement certain kinds of programs
with great elegance and ease, as we shall see in the next two exam-
ples, taken from [11]. Other examples can be found in [11], [4], and
[1]. Before we go into these examples, however, it is helpful for us
to define a library of frequently used lazy list operations.

class Lib {
static class List { ... }
static lazy List intsFrom(int n) { ... }
static lazy List first(int n, lazy List l) {
if (n==0)
return null;

else
return new List(l.head, first(n-1, l.tail));

}
static void print(lazy List l) {
while (l!=null) {
System.out.println(l.head);
l=l.tail;

}
}

}

Figure 3. A LazyJ list library.

This library, shown in figure 3, includes the List class (dis-
cussed previously), the first method, which produces a list con-
taining the first n elements of the list passed to it as an argument,
and print, which prints a lists’s elements to the console. Note that
print was carefully written in order to permit the part of the list
that has already been printed to be garbage-collected; this allows
print to be used with infinite lists.

Generating prime numbers Figure 4 shows the complete source
code for a LazyJ program that displays the first 1,000 prime num-
bers using an algorithm known as the sieve of Eratosthenes. Note
that the static field primes holds the list of all prime numbers. We
use the first method to extract the first 1,000 elements of this
infinite list for the sole purpose of ensuring termination. Without
this call, the program would happily keep printing prime numbers
forever (well, until it exhausts the computer’s available memory).
The ability to separate generation from selection [6], as illustrated
by this example, is one of the many strengths of lazy evaluation.

Lazy input and output While many programs do not require user
interaction, most real-world applications must interface with the
outside world. Lazy I/O can be used to cleanly separate the parts
of a program that implement business logic from the parts that
implement its user interface.

class Primes extends Lib {
public static List filter(int n, lazy List l) {
if (l.head%n==0)
return filter(n, l.tail);

else
return new List(l.head, filter(n, l.tail));

}
public static lazy List sieve(lazy List l) {
return new List(l.head, sieve(filter(l.head, l.tail)));

}
public static lazy List primes=sieve(intsFrom(2));
public static void main(String[] args) {
print(first(1000, primes));

}
}

Figure 4. The sieve of Eratosthenes in LazyJ.

class InsurancePremiumCalculator {
boolean ask(String question) {
boolean ans;
// display a window with question and yes/no
// buttons, block until one is pressed
...
return ans;

}
int calculatePremium() {
if (ask("Do you smoke?"))
return 1000;

boolean drinker=ask("Do you drink?");
if (ask("Do you sky-dive?") && !drinker)
...

else if (drinker && ...)
...

...
}

}

Figure 5. Using Java to calculate insurance premiums.

Consider, for example, an application that is used by an insur-
ance company’s telephone sales personnel to calculate the premi-
ums of potential customers. The company wants customers to know
their time is valuable (and, truth be told, save money on its telemar-
keters’ hourly wages), and thus it is important to ask customers for
no more information than is absolutely necessary for the premium
calculation.

We might choose to implement this application in Java as shown
in figure 5. However, this implementation has the disadvantage that
the code that implements the insurance calculation logic is cluttered
by user interface code, which makes it hard to read and not modular.

A LazyJ implementation of the same application is shown in
figure 6. Note that the ask method’s return type is now lazy
boolean, although its body is unchanged. This enables the
calculatePremium method to lazily ask for all of the informa-
tion it may need up front; this information will only actually be
requested if and when it is required by the premium calculation
logic in premiumCalculatorLogic. In addition to making the
code which implements the logic operations easier to read, pro-
grammers may now subclass InsurancePremiumCalculator
and override its premiumCalculatorLogic method to change
the business logic without having to worry about I/O operations.

class InsurancePremiumCalculator {
boolean ask(String question) {
boolean ans;
// display a window with question and yes/no
// buttons, block until one is pressed
...
return ans;

}
int calculatePremium() {
return premiumCalculatorLogic(
ask("Do you sky-dive?"),
ask("Do you smoke?"),
...,
ask("Do you drink?")

);
}
int premiumCalculatorLogic(lazy boolean skydiver,

lazy boolean smoker,
...,
lazy boolean drinker) {

if (smoker)
return 1000;

else if (skydiver && !drinker)
...

else if (drinker && ...)
...

...
}

}

Figure 6. Using lazy I/O to calculate insurance premiums.

3. Compilation
The LazyJ compiler1 is built on top of the Polyglot extensible
compiler framework [10]. Like other Polyglot-based language
implementations, our compiler translates LazyJ programs into
semantically-equivalent Java 1.4 programs that can be compiled
and run using a standard Java compiler and virtual machine.

3.1 Implementation of delay and force

As noted in section 2, LazyJ uses type information in order to
determine where delay and force operations are required. In this
section, we discuss LazyJ’s implementation of these operations.

package polyglot.ext.lazyj.runtime;

public abstract class Thunk {
protected static final Object unforced=new Object();
protected Object value=unforced;
protected abstract Object _force() throws Exception;
public synchronized Object force() {
if (value==unforced)
try { value=_force(); }
catch (Exception e) { throw new LazyJError(e); }

return value;
}

}

Figure 7. The Thunk class.

Delayed expressions are represented as thunks: closure-like ob-
jects that consist of an unevaluated expression and the environment

1 Available at http://www.cs.ucla.edu/˜awarth/lazyj/lazyj.tar.gz

required to evaluate it. Figure 7 shows the Thunk class, which is
the central part of LazyJ’s runtime library.

Thunk is never instantiated directly; instead, delayed expres-
sions are translated into anonymous classes that inherit from
Thunk. For instance, the declaration

lazy String s="hello"+"world";

is translated to

polyglot.ext.lazyj.runtime.Thunk s=
new polyglot.ext.lazyj.runtime.Thunk() {
protected Object _force() throws Exception {
return "hello"+"world";

}
};

In order to get the whole picture we must also view the translation
of a use of s, such as

char c=s.charAt(3);

which is

char c=((String)s.force()).charAt(3);

Generally, when the LazyJ compiler determines that an expression
must be forced, it generates a call to the associated thunk’s force
method and a typecast to convert the result of that call to the
appropriate type. This cast is always safe and could be eliminated
by making Thunk a generic class that is parameterized by the type
of the delayed expression.

Note that because Thunk’s force method is synchronized, it
is safe to write multi-threaded LazyJ programs. force() does not
need to be synchronized because it is protected and it is only
called from force.

3.2 Caching
Lazy evaluation is a combination of normal-order evaluation and
memoization: the only time a thunk’s associated expression is ever
evaluated is the first time the thunk is forced. The result of eval-
uating the expression is stored in the thunk’s value field, which
provides the result of subsequent forces. value is also used as an
indicator that the thunk has not yet been forced. (Refer to figure 7
for the implementation of this caching mechanism.)

3.3 Boxing/Unboxing
When delaying an expression whose type is one of Java’s primitive
types (e.g., int, float, ...), the LazyJ compiler generates addi-
tional code that boxes/unboxes the expression in order to conform
to Thunk’s interface. (This mechanism may no longer be necessary
since Java 1.5 automatically boxes and unboxes values of primitive
types.)

3.4 Capturing the environment of a delayed expression
Delayed expressions are seldom self-contained: more often than
not, they reference local and global variables, formals, etc. Since
there is no guarantee that an expression will be forced in the same
scope in which it was created, it becomes necessary for a thunk
to contain the environment (i.e., the list of name-value bindings)
required for the evaluation of its associated expression.

Our implementation represents the name-value bindings that
make up the environment required to evaluate a delayed expression
as fields of its associated Thunk object. See figure 8 for an exam-
ple. An interesting complication arises because Java’s anonymous
classes cannot refer to non-final local variables and arguments. In
order to circumvent this restriction, our compiler generates final
copies of such variables and references the copies instead of the

class Test {
String f="field";
public void m() {
String l="local";
lazy String s=f+l;

}
}

- -

class Test {
String f="field";
public void m() {
String l="local";
final String _lazyj_final_l=l;
polyglot.ext.lazyj.runtime.Thunk s=
new polyglot.ext.lazyj.runtime.Thunk() {
String l=_lazyj_final_l;
public Object _force() throws Exception {
return f+l;

}
};

}
}

Figure 8. The Test class in LazyJ and its Java translation.

original variables inside the body of the thunk’s force() method.
In our example, a final copy of l called lazyj final l is gen-
erated by the LazyJ compiler.

This results in different semantics for delaying fields and local
variables, since fields are delayed by reference, and local variables
are delayed by value. A discussion of this issue is included in
section 6.

3.5 Exception handling

package polyglot.ext.lazyj.runtime;

public class LazyJError extends Error {
protected Exception source;
public LazyJError(Exception s) { source=s; }
public Exception getSource() { return source; }

}

Figure 9. The LazyJError class.

Since LazyJ allows expressions that may throw exceptions to
be delayed, it must also provide a mechanism for handling those
exceptions. The problem is that expressions are seldom forced
in the same context in which they are delayed, and therefore it
is certainly possible that the part of the program that forces an
expression will not do so inside an appropriate try/catch block.

Currently, LazyJ gets around this problem by wrapping excep-
tions inside LazyJError objects and re-throwing them. This mech-
anism is implemented by Thunk’s force method, shown in figure
7. The LazyJError class is shown in figure 9. Since Java’s Errors
are not checked by the compiler, the programmer is free to handle
LazyJErrors or not, whenever a thunk is forced.

Problems with this approach and plans for improving LazyJ’s
exception handling mechanism are discussed in section 6.

3.6 Method overloading
In Java 1.5, a class cannot have two methods called m, one of which
takes a single argument of type List<String>, and another that

takes a single argument of type List<Integer>. This restriction
exists because the Java Virtual Machine (JVM) does not provide
support for generics. Instead, generic types such as List<String>
are compiled into ordinary (i.e., non-generic) types—List, in our
example—and the necessary typecasts are generated by the com-
piler. This technique is called type erasure.

Java’s erasure causes similar problems to any language which is
implemented on top of Java. In LazyJ, the types lazy String
and lazy Integer both compile to polyglot.ext.lazyj.
runtime.Thunk, which results in problems with method over-
loading. Even if Thunks were generic (i.e., parameterized by the
type of expression they yield when forced), the compilation of the
Java translation would still fail due to Java’s erasure.

4. Featherweight LazyJ
This section describes Featherweight LazyJ (FLJ), an extension of
Featherweight Java (FJ) [5] that formalizes LazyJ. This formalism
consists of three parts:

• FJEDF, an extension of FJ that supports explicit delay and
force operations;

• a typing relation for FLJ;
• and finally, a translation that maps well-typed FLJ programs to

semantically-equivalent FJEDF programs.

We now describe each of these in turn.

4.1 Featherweight Java with explicit delay and force

T ::= Eager C | Delayed C
CL ::= class C extends C {T f; K M}
K ::= C(T f) {super(f); this.f=f;}
M ::= T m(T x) {return t;}
t ::= x | t.f | t.m(f) | new C(t) | (T)t |

delay t | force t
v ::= new C(v) | delay t

Figure 10. FJEDF syntax.

Featherweight Java with explicit delay and force (FJEDF)
extends Featherweight Java (FJ) with explicit delay and force
operations, as well as Delayed and Eager types. The grammar
of the language is shown in figure 10. Note that while FJ types
are class names, FJEDF types have the form Eager C or Delayed
C, where C is a class name.2 Note also that delayed expressions
are values. This is necessary in order for lazy evaluation to work
properly: if delayed expressions were not values, they could not be
used as arguments to method or constructor calls given FJ’s call-
by-value semantics.

T <: T

T1 <: T2 T2 <: T3

T1 <: T3

CT (C) = class C extends D {...}
Eager C <: Eager D

CT (C) = class C extends D {...}
Delayed C <: Delayed D

Figure 11. FJEDF subtyping.

2 FJEDF’s Eager types are equivalent to FJ types.

Figure 11 shows FJEDF’s subtyping relation, which essentially
separates types into eager and delayed “families”. An eager type
cannot be a subtype of a delayed type, and vice-versa.

x : T ∈ Γ

Γ ` x : T
(T-VAR)

Γ ` t0 : Eager C0 fields(C0) = T f

Γ ` t0.fi : Ti
(T-FIELD)

Γ ` t0 : Eager C0

mtype(m, C0) = S→T
Γ ` t: T T <: S

Γ ` t0.m(t): T
(T-INVK)

fields(C) = S f
Γ ` t : T T <: S

Γ ` new C(t) : Eager C
(T-NEW)

Γ ` t0 : Eager C

Γ ` (T)t0 : T
(T-CAST)

Γ ` t0 : Eager C

Γ ` delay t0 : Delayed C
(T-DELAY)

Γ ` t0 : Delayed C

Γ ` force t0 : Eager C
(T-FORCE)

x : T, this : Eager C ` t0 : S0 S0 <: T0

CT (C) = class C extends D {. . .}
override(m, D, T→ T0)

T0 m(T x) {return t0; } OK in C
(T-METHOD)

K = C(T g, S f) {super(g); this.f=f; }
fields(D) = T g M OK in C

class C extends D {S f; K M} OK
(T-CLASS)

Figure 12. FJEDF typing.

FJEDF’s typing relation is shown in figure 12. The rule T-Field
asserts that only fields of eager values may be accessed. Similarly,
T-Invk asserts that only methods of eager values may be called. T-
New asserts that constructor calls always yield eager values. T-Cast
ensures that only eager expressions may be typecast; delayed ex-
pressions are excluded because casts require type information to be
available during the program’s execution, and the type of a delayed
expression is not known until the expression is forced. Note that
there is no restriction on the destination type, which may be eager
or lazy. T-Delay and T-Force ensure that arguments to delay and
force are eager and delayed, respectively. Redundant delays are
not permitted since they are not needed by our translation. Conse-
quently, Delayed Delayed C, for example, is not a valid type. T-
Method performs the usual substitution on the body of the method
and makes this an eager value (this is sensible since programmers
are not permitted to call methods or access fields of delayed ob-
jects).

FJEDF’s auxiliary definitions are shown in figure 13. These are
identical to those of FJ, and are shown here only for the sake of
completeness. Note that the override relation requires the type of a
method to be exactly the same as that of the method it overrides.
This restriction makes it possible for the type system to track
whether values will be eager or lazy, which enables the compiler
to implicitly add delay and force operations where needed.3

3 This restriction could be relaxed to covariant return types and contravari-
ant argument types, as long as the laziness/eagerness of the types is con-
served.

fields(Object) = •

CT (C) = class C extends D {T f; K M}
fields(D) = S g

fields(C) = S g, T f

CT (C) = class C extends D {T f; K M}
S m(S x) {return t;} ∈ M

mtype(m, C) = S→S

CT (C) = class C extends D {T f; K M}
m is not defined in M

mtype(m, C) = mtype(m, D)

CT (C) = class C extends D {T f; K M}
S m(S x) {return t;} ∈ M

mbody(m, C) = (x, t)

CT (C) = class C extends D {T f; K M}
m is not defined in M

mbody(m, C) = mbody(m, D)

mtype(m, D) = S→S0 implies T = S and T0 = S0

override(m, D, T→ T0)

Figure 13. FJEDF auxiliary definitions.

fields(C) = T f

(new C(v)).fi → vi
(E-PROJNEW)

mbody(m, C) = (x, t0)

(new C(v)).m(u)→ [x 7→ u, this 7→ new C(v)]t0

(E-INVKNEW)

Eager C <: T

(T)(new C(v))→ new C(v)
(E-CASTNEW)

t0 → t′
0

t0.f→ t′
0.f

(E-FIELD)

t0 → t′
0

t0.m(t)→ t′
0.m(t)

(E-INVK-RECV)

ti → t′
i

v0.m(v, ti, t)→ v0.m(v, t
′
i, t)

(E-INVK-ARG)

ti → t′
i

new C(v, ti, t)→ new C(v, t′
i, t)

(E-NEW-ARG)

t0 → t′
0

(C)t0 → (C)t′
0

(E-CAST)

t0 → t′
0

force t0 → force t′
0

(E-FORCE-ARG)

force (delay t0) → t0 (E-FORCEDELAY)
Figure 14. FJEDF evaluation.

Figure 14 shows FJEDF’s small-step evaluation relation. The
E-CastNew rule shows that only casts to eager types are allowed
(there is no rule for casts to delayed types). The rules for force
expressions (E-Force-Arg and E-ForceDelay) ensure that force’s
argument is always evaluated before the operation is applied to it.
There is no evaluation rule for delay expressions (after all, they
are already values). However, in order to properly capture Java’s
static scoping, substitutions on delay expressions must also be
performed on their associated expressions. This is analogous to the
substitution of free variables in a lambda expression in the lambda
calculus [5]. The other evaluation rules are identical to those of FJ.

We have encoded FJEDF in the Coq theorem prover [2] and used
this encoding4 to prove a type soundness theorem for FJEDF using
the standard progress and preservation style.

THEOREM 4.1. (Progress) If ` t : T, then either t is a value, t
contains a subexpression of the form (U)v where ` v : S and
S <:/ U, or there exists some term s such that t→ s.

THEOREM 4.2. (Preservation) If Γ ` t : T and t → s, then there
exists some type S such that Γ ` s : S and S <: T.

Together these theorems imply that the evaluation of well-typed
FJEDF programs cannot result in a type error.

4.2 FLJ typing
For simplicity, FLJ uses the same syntax as FJEDF (see figure 10).
It is FLJ’s typing relation—a relaxation of its FJEDF counterpart—
that makes FLJ a more convenient medium for expressing lazy
programs. This section describes FLJ’s typing rules.

T1 <: T2

coercible(T1, T2)
(C-SUB)

Eager C <: Eager D

coercible(Eager C, Delayed D)
(C-EAGER)

Delayed C <: Delayed D

coercible(Delayed C, Eager D)
(C-DELAYED)

getClass(Eager C) = C

getClass(Delayed C) = C

Figure 15. FLJ’s coercible relation and getClass function.

As was discussed in previous sections, LazyJ implicitly forces
and delays expressions as necessary. These implicit operations are
formalized as coercions. Figure 15 shows the coercible relation,
which specifies what coercions are supported by the language. If C
is a subclass of D, then both C types (i.e., Eager C and Delayed
C) are coercible to either of the D types (Eager D or Delayed
D). FLJ’s subtyping relation, which is used in the definition of
coercible, is identical to that of FJEDF (see figure 11 for details).

Figure 16 shows the FLJ typing rules that are different from
those in FJEDF. T-Field and T-Invk ignore the “eagerness” of re-
ceivers. This is accomplished by using the function getClass, which
extracts the class of its FLJ type argument (this function is shown
in figure 15). T-Invk and T-New use the coercible relation in or-
der to relax FJEDF’s argument type checking rules. Finally, T-Cast
also relaxes the restrictions of its FJEDF counterpart, allowing any
well-typed term to be typecast to any type.

Γ ` t0 : T fields(getClass(T)) = T f

Γ ` t0.fi : Ti
(T-FIELD)

Γ ` t0 : T0

mtype(m, getClass(T0)) = S→T
Γ ` t: T coercible(T, S)

Γ ` t0.m(t): T
(T-INVK)

fields(C) = S f
Γ ` t : T coercible(T,S)

Γ ` new C(v) : Eager C
(T-NEW)

Γ ` t0 : T0

Γ(T)t0 : T
(T-CAST)

Figure 16. FLJ typing (rules that are the same as in FJEDF omitted
for brevity).

[[x]] = x (TR-VAR)

Γ ` t0 : T coerce(t0, Eager getClass(T)) = t′
0

[[t0.f]] = t′
0.f

(TR-FIELD)

Γ ` t0 : T coerce(t0, Eager getClass(T)) = t′
0

mtype(m, getClass(T)) = S→S coerce(t,S) =t′

[[t0.m(t)]] = t′
0.m(t′)

(TR-INVK)

fields(C) = T f coerce(t,T) =t′

[[new C(t)]] = new C(t′)
(TR-NEW)

Γ ` t : T coerce(t, Eager getClass(T)) = t′

[[(Eager C)t]] = (Eager C)t′

(TR-CASTEAGER)

Γ ` t : T coerce(t, Eager getClass(T)) = t′

[[(Delayed C)t]] = delay ((Eager C)t′)
(TR-CASTDELAYED)

[[delay t]] = delay [[t]] (TR-DELAY)

[[force t]] = force [[t]] (TR-FORCE)
Figure 17. Translating from FLJ to FJEDF.

Γ ` [[t]] : Eager C

coerce(t, Eager D) = [[t]]
(C-EAGEREAGER)

Γ ` [[t]] : Delayed C

coerce(t, Eager D) = force [[t]]
(C-DELAYEDEAGER)

Γ ` [[t]] : Eager C

coerce(t, Delayed D) = delay [[t]]
(C-EAGERDELAYED)

Γ ` [[t]] : Delayed C

coerce(t, Delayed D) = [[t]]
(C-DELAYEDDELAYED)

Figure 18. Translating and coercing expressions.

4.3 Translating FLJ to FJEDF

Figures 17 and 18 show the mutually-recursive relations [[•]] and
coerce, respectively, which are used in our translation from FLJ to
equivalent FJEDF.

The translation relation [[•]] maps well-typed FLJ expressions to
FJEDF expressions.This relation ensures that the translated version
of the expression will adhere to FJEDF’s typing rules. For exam-
ple, the rules TR-Field and TR-Invk coerce receivers to eager val-
ues (which results in the insertion of forces where appropriate).
Similarly, TR-Invk and TR-New coerce the arguments of meth-
ods and constructors to their appropriate types. Casts are translated
by the rules TR-CastEager (which is used when the cast’s associ-
ated type is eager), and TR-CastDelayed (which is used when the
cast’s associated type is delayed). TR-CastEager simply forces the
cast’s associated expression. TR-CastDelayed first forces the ex-
pression, then casts it to the eager version of the cast’s associated
type, and finally delays the result. forceing is necessary here be-
cause FJEDF’s typecasts are only defined for eager types (this re-
striction exists because the only way to determine the type of an
expression at runtime—this information is needed during the exe-
cution of a cast operation—is to force to get the expression into
the form new C(...)). Finally, TR-Force and TR-Delayed simply
translate force and delay’s arguments, respectively.

Our translation uses the coerce relation (shown in figure 18)
in order to force or delay the translations of subexpressions so
that the resulting translated expression is well-typed in FJEDF. For
example, the translation of the FLJ-like expression new List(0,
null) is new List(0, delay null). Here, the rule TR-New
is applied to the whole expression, which results in the coercion
of null to lazy List. This coercion in turn uses the rule C-
EagerDelayed, since null has type Eager Object.

Another application of coerce is in the translation of method
bodies. Consider, for example, the method Delayed C m() {
return new D(); }, where D is a subclass of C. The correct
translation of m’s body is obtained with coerce(new D(), Delayed
C). This example illustrates why, in each of the rules that imple-
ment coerce (see figure 18), the class name of [[t]]’s type and the
class name of the desired type are not the same.

4.4 FLJ soundness?
We designed FJEDF, proved its soundness using the Coq theorem
prover, and designed the translation from FLJ to FLEDF so that we
could prove the soundness of FLJ—a task which we have yet to
complete. The particular theorem we would like to prove is that
every well-typed FLJ program can be translated to a well-typed
FJEDF program; in other words, that our translation is sound (i.e.,
both complete and well-typed).

5. Related Work
Both Scheme [9] and ML [8] include support for lazy evaluation via
explicit delay and force operations. Although the expressiveness
of these constructs is identical to that of LazyJ’s lazy types, they
are less convenient for the programmer.

In Scheme, the form (delay <expression>) is defined
to have the same semantics as the expression (make-promise
(lambda () <expression>)), where make-promise performs
the same work of caching the result of the evaluation that is per-
formed in LazyJ by Thunk’s force method. force is implemented
as (lambda (x) (x)) (i.e., it simply calls the function returned
by make-promise). Because of Scheme’s dynamic typing, pro-
grammers must be careful to avoid redundant delays and forces,

4 Our encoding is based on Stephanie Weirich’s encoding of Featherweight
Java in [14], and is available at http://www.cs.ucla.edu/ awarth/lazyj/fj-edf.v

which at best can result in performance degradation, and at worst
could cause type errors at run-time (e.g., not applying enough
forces to an expression which has been delayed multiple times
before using it).

ML provides a delay function of type (unit -> ’a) -> ’a
susp to create suspensions (i.e., thunks), which provides similar
functionality to that of Scheme, although it is a bit less conve-
nient to use, since delay’s argument is a function that takes the
dummy value () and returns the value to be delayed instead of
the value itself. This complication is required because of the lan-
guage’s call-by-value semantics and the absence of a mechanism
for defining new syntax such as Scheme’s define-syntax. The
object returned by delay uses side effects in order to cache the
result of the last force (ML’s force has type ’a susp -> ’a).
LazyJ’s approach can be thought of as the opposite of ML’s: instead
of using delay and force and having the compiler infer the types
of expressions, LazyJ programmers annotate the types of variables
and methods as lazy or not, and the compiler generates the nec-
essary delay and force operations. We believe that LazyJ’s ap-
proach makes for more readable code. For example, using explicit
delay and force operations, the intsFrom method from section
2 would be implemented as follows:

static lazy List intsFrom(int n) {
return delay new List(n, intsFrom(n+1);

}

Clients of intsFrom would have to force its result before using
it. Consider the following version of Lib’s print method using
explicit delays and forces:

static void print(lazy List l) {
while ((force l)!=null) {
System.out.println((force l).head);
l=l.tail;

}
}

We believe that the presence of delay and force operations un-
necessarily lowers a program’s level of abstraction. Moreover, our
approach is a more natural fit for languages in which the types
of variables and functions/methods are always explicitly declared,
such as Java.

List intsFrom(int n) {
return new List(n, intsFrom(n+1));

}

Figure 19. A version of intsFrom written in Wadler’s odd style
of lazy evaluation.

In [13], Wadler et al. describe two different styles of lazy eval-
uation: odd, which is easy to encode in languages that provide ex-
plicit delay and force operations but results in too much evalu-
ation (shown in figure 19), and even, which properly delays eval-
uation but is more difficult to encode in these languages (shown
in figure 2). The paper also describes an extension of ML that in-
cludes a lazy modifier that can be used in (i) datatype declarations,
which makes constructors return suspensions, and (ii) function dec-
larations, which results in delaying the evaluation of the function’s
body. While Wadler’s lazy functions can be expressed easily in
LazyJ by declaring a method’s return type as lazy, his language
provides no mechanism for assigning lazy semantics to selected
arguments of a method, which is easily expressed in LazyJ. The
authors claim that their language allows programmers to use the
even style with ease, although it is difficult to write in the odd
style. LazyJ allows for both styles to be easily expressed, as shown

in figures 19 and 2. By simply changing the method’s return type
from lazy List to List, we obtain a version of the method which
always creates a List (node) object when called, regardless of
whether or not that object is actually required (Wadler’s odd style).

Lambda4J [7], a Java library for functional programming, pro-
vides lazy lists and associated operations such as map, fold, etc.
While these could certainly be used to implement intsFrom and
most of the examples shown in section 2, Lambda4J does not sup-
port other forms of lazy evaluation (e.g., anything that does not in-
volve lists) and therefore cannot be used to implement many idioms
supported by LazyJ (one such example is shown in figure 6).

6. Discussion and Future Work
The LazyJ compiler creates final copies of local variables that
are used in a delayed expression. Unfortunately, this may affect the
program’s semantics. It is certainly possible that the value of a local
variable will change after it is used in an expression that is delayed.
Because the code in the thunk does not reference the variable itself,
but instead its copy, this change will have no effect on the value
obtained from forcing the thunk! A different approach in which
non-final variables are not permitted to be delayed (whereby an
attempt to do so would result in a compilation error) may be more
desirable. This would result in no loss of expressiveness, as the
programmer may still elect to manually create final copies of
such variables, and the semantics of the program would be more
straightforward.

The practice of wrapping exceptions in LazyJErrors is not
satisfactory for several reasons. First, since force operations are
implicit, it is not obvious to the programmer where try/catch
blocks should be placed to handle the exceptions which may result
from forcing a thunk. Even when the programmer knows where
he may want to handle such exceptions, it is not obvious what
those exceptions might be—and the compiler provides no help
whatsoever! A much better way of dealing with exceptions might
be to augment lazy types with optional throws clauses, similar to
those of methods. This would enable the typechecker to ensure that
the exceptions which may be thrown when a delayed expression is
forced are handled appropriately. The inclusion of this feature is
planned for a future release of LazyJ.

One of design choices we faced while formalizing LazyJ was
whether to use coercions or to modify the subtyping relation so
that Eager C is a subtype of Delayed C and vice-versa. We chose
to use coercions because of the potential complications that could
be introduced by a cyclic subtyping relation [12]. Since it is rather
easy to forget to place a coercion in a particular typing rule (and
such omissions are difficult to catch!), it would be useful to prove
that the typing relation shown in this paper is equivalent to one with
a cyclic subtyping relation and no coercions.

Finally, while mixing laziness and side effects can be useful
(as demonstrated by our lazy I/O example in section 2), it can
also make programs difficult to understand. It might be helpful to
allow methods to be declared to be pure, meaning that they are
side effect free (this could easily be checked by the compiler). This
would enable the compiler to produce warnings or error messages
for calls to non-pure methods found in lazy methods (i.e. those
whose return types are lazy).

7. Conclusion
We have described LazyJ, an extension of the Java programming
language in which both eager and lazy evaluation can be expressed
conveniently with minimal additional syntax (a single keyword!).
LazyJ enables Java programmers to make use of a variety of tech-
niques involving the use of lazy evaluation, such as partially gen-
erating potentially infinite data structures on demand. These tech-

niques can improve modularity and provide for better abstractions,
which in turn can enhance programmer productivity. We have also
described our implementation, which translates LazyJ programs to
Java. Finally, we have formalized LazyJ and have begun working
on a proof of soundness for the language.

8. Acknowledgements
The author wishes to thank Jeff Fischer for his collaboration on
the Coq soundness proof of FJEDF, and Todd Millstein, Stephen
Murrell, Paul Eggert, and the anonymous reviewers for comments
on numerous drafts of this work.

References
[1] Richard Bird. Introduction to Functional Programming. Pearson

Education, 1998.

[2] Coq home page. http://coq.inria.fr/.

[3] Peyton Jones et al. Haskell 98 Language and Libraries: the Revised
Report. Cambridge University Press, 2003.

[4] Peter Henderson. Functional Programming – Application and Imple-
mentation. Series in Computer Science. Prentice/Hall International,
1980.

[5] Atshushi Igarashi, Benjamin Pierce, and Philip Wadler. Featherweight
Java: A minimal core calculus for Java and GJ. In Loren Meissner,
editor, Proceedings of the 1999 ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages & Applications
(OOPSLA‘99), volume 34(10), pages 132–146, N. Y., 1999.

[6] Simon Peyton Jones. Wearing the hair shirt: a retrospective on
Haskell. Invited talk at POPL 2003.

[7] Lambda4J home page. http://www.nongnu.org/lambda4j/.

[8] Robin Milner, Mads Tofte, and David Macqueen. The Definition of
Standard ML. MIT Press, Cambridge, MA, USA, 1997.

[9] IV N. I. Adams, D. H. Bartley, G. Brooks, R. K. Dybvig, D. P.
Friedman, R. Halstead, C. Hanson, C. T. Haynes, E. Kohlbecker,
D. Oxley, K. M. Pitman, G. J. Rozas, Jr. G. L. Steele, G. J. Sussman,
M. Wand, and H. Abelson. Revised5 report on the algorithmic
language scheme. SIGPLAN Not., 33(9):26–76, 1998.

[10] Nathaniel Nystrom, Michael R. Clarkson, and Andrew C. Myers.
Polyglot: An extensible compiler framework for Java. In Proceedings
of CC 2003: 12th International Conference on Compiler Construc-
tion. Springer-Verlag, April 2003.

[11] D. A. Turner. Recursion equations as a programming language.
In J. Darlington, D. Turner, and P. Henderson, editors, Functional
Programming and Its Applications: An Advanced Course, New York,
NY, USA, 1982. Cambridge University Press.

[12] Philip Wadler. Personal communication, January 2005.

[13] Philip Wadler, Walid Taha, and David MacQueen. How to add
laziness to a strict language without even being odd. In Workshop on
Standard ML, Baltimore, 1998.

[14] Stephanie Weirich. Proof of the soundness of featherweight
java using Coq. http://www.cis.upenn.edu/proj/plclub/
wiki-static/fj-coq.tar.gz.

