
Packrat Parsers Can Support Left Recursion ∗

Alessandro Warth
University of California, Los Angeles

and Viewpoints Research Institute
awarth@cs.ucla.edu

James R. Douglass
The Boeing Company

jamie.douglass@boeing.com

Todd Millstein
University of California, Los Angeles

todd@cs.ucla.edu

Abstract
Packrat parsing offers several advantages over other parsing tech-
niques, such as the guarantee of linear parse times while supporting
backtracking and unlimited look-ahead. Unfortunately, the limited
support for left recursion in packrat parser implementations makes
them difficult to use for a large class of grammars (Java’s, for exam-
ple). This paper presents a modification to the memoization mech-
anism used by packrat parser implementations that makes it possi-
ble for them to support (even indirectly or mutually) left-recursive
rules. While it is possible for a packrat parser with our modification
to yield super-linear parse times for some left-recursive grammars,
our experiments show that this is not the case for typical uses of
left recursion.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Parsing

General Terms Languages, Algorithms, Design, Performance

Keywords packrat parsing, left recursion

1. Introduction
Packrat parsers [2] are an attractive choice for programming lan-
guage implementers because:

• They provide “the power and flexibility of backtracking and
unlimited look-ahead, but nevertheless [guarantee] linear parse
times.” [2]
• They support syntactic and semantic predicates.
• They are easy to understand: because packrat parsers only sup-

port ordered choice—as opposed to unordered choice, as found
in Context-Free Grammars (CFGs)—there are no ambiguities
and no shift-reduce/reduce-reduce conflicts, which can be diffi-
cult to resolve.

∗ This material is based upon work supported by the National Science
Foundation under Grant Nos. IIS-0639876, CCF-0427202, and CCF-
0545850. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not necessarily
reflect the views of the National Science Foundation.

This paper is also available as VPRI Technical Report TR-2007-002.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PEPM’08, January 7–8, 2008, San Francisco, California, USA.
Copyright c© 2008 ACM 978-1-59593-977-7/08/0001. . . $5.00

• They impose no separation between lexical analysis and pars-
ing. This feature, sometimes referred to as scannerless pars-
ing [10], eliminates the need for moded lexers [9] when combin-
ing grammars (e.g., in Domain-Specific Embedded Language
(DSEL) implementations).

Unfortunately, “like other recursive descent parsers, packrat
parsers cannot support left-recursion” [6], which is typically used
to express the syntax of left-associative operators. To better under-
stand this limitation, consider the following rule for parsing expres-
sions:

expr ::= <expr> "-" <num> / <num>

Note that the first alternative in expr begins with expr itself. Be-
cause the choice operator in packrat parsers (denoted here by “/”)
tries each alternative in order, this recursion will never terminate: an
application of expr will result in another application of expr with-
out consuming any input, which in turn will result in yet another
application of expr, and so on. The second choice—the non-left-
recursive case—will never be used.

We could change the order of the choices in expr,

expr ::= <num> / <expr> "-" <num>

but to no avail. Since all valid expressions begin with a number, the
second choice—the left-recursive case—would never be used. For
example, applying the expr rule to the input “1-2” would succeed
after consuming only the “1”, and leave the rest of the input, “-2”,
unprocessed.

Some packrat parser implementations, including Pappy [1] and
Rats! [6], circumvent this limitation by automatically transforming
directly left-recursive rules into equivalent non-left-recursive rules.
This technique is called left recursion elimination. As an example,
the left-recursive rule above can be transformed to

expr ::= <num> ("-" <num>)*

which is not left-recursive and therefore can be handled correctly
by a packrat parser. Note that the transformation shown here is
overly simplistic; a suitable transformation must preserve the left-
associativity of the parse trees generated by the resulting non-left-
recursive rule, as well as the meaning of the original rule’s semantic
actions.

Now consider the following minor modification to the original
grammar, which has no effect on the language accepted by expr:

x ::= <expr>
expr ::= <x> "-" <num> / <num>

When given this grammar, the Pappy packrat parser generator [1]
reports the following error message:

Illegal left recursion: x -> expr -> x

This happens because expr is now indirectly left-recursive, and

Pappy does not support indirect left recursion (also referred to as
mutual left recursion). In fact, to the best of our knowledge, none
of the currently-available packrat parser implementations supports
indirectly left-recursive rules.

Although this example is certainly contrived, indirect left recur-
sion does in fact arise in real-world grammars. For instance, Roman
Redziejowski [8] discusses the difficulty of implementing a packrat
parser for Java [5], whose Primary rule (for expressions) is indi-
rectly left-recursive with five other rules. While programmers can
always refactor grammars manually in order to eliminate indirect
left recursion, doing so is tedious and error-prone, and in the end it
is generally difficult to be convinced that the resulting grammar is
equivalent to the original.

This paper presents a modification to the memoization mecha-
nism used by packrat parser implementations that enables them to
support both direct and indirect left recursion directly (i.e., without
first having to transform rules). While it is possible for a packrat
parser with our modification to yield super-linear parse times for
some left-recursive grammars, our experiments (Section 5) show
that this is not the case for typical uses of left recursion.

The rest of this paper is structured as follows. Section 2 gives
a brief overview of packrat parsing. Section 3 describes our mod-
ification to the memoization mechanism, first showing how direct
left recursion can be supported, and then extending the approach
to support indirect left recursion. Section 4 validates this work by
showing that it enables packrat parsers to support a grammar that
closely mirrors Java’s heavily left-recursive Primary rule. Section 5
discusses the effects of our modification on parse times. Section 6
discusses related work, and Section 7 concludes.

2. An Overview of Packrat Parsing
Packrat parsers are able to guarantee linear parse times while sup-
porting backtracking and unlimited look-ahead “by saving all in-
termediate parsing results as they are computed and ensuring that
no result is evaluated more than once” [2]. For example, consider
what happens when the rule

expr ::= <num> "+" <num>
/ <num> "-" <num>

(where num matches a sequence of digits) is applied to the input
“1234-5”.

Since choices are always evaluated in order, our parser begins
by trying to match the input with the pattern

<num> "+" <num>

The first term in this pattern, <num>, successfully matches the
first four characters of the input stream (“1234”). Next, the parser
attempts to match the next character on the input stream, “-”, with
the next term in the pattern, "+". This match fails, and thus we
backtrack to the position at which the previous choice started (0)
and try the second alternative:

<num> "-" <num>

At this point, a conventional top-down backtracking parser would
have to apply num to the input, just like we did while evaluating
the first alternative. However, because packrat parsers memoize
all intermediate results, no work is required this time around: our
parser already knows that num succeeds at position 0, consuming
the first four characters. It suffices to update the current position to
4 and carry on evaluating the remaining terms. The next pattern,
"-", successfully matches the next character, and thus the current
position is incremented to 5. Finally, <num> matches and consumes
the “5”, and the parse succeeds.

Intermediate parsing results are stored in the parser’s memo
table, which we shall model as a function

APPLY-RULE(R,P)
let m = MEMO(R,P)
if m = NIL

then let ans = EVAL(R.body)
m← new MEMOENTRY(ans,Pos)
MEMO(R,P)← m
return ans

else Pos← m.pos
return m.ans

Figure 1. The original APPLY-RULE procedure.

MEMO : (RULE,POS)→MEMOENTRY

where

MEMOENTRY : (ans : AST, pos : POS)

In other words, MEMO maps a rule-position pair (R,P) to a tuple
consisting of

• the AST (or the special value FAIL1) resulting from applying R
at position P, and
• the position of the next character on the input stream.

or NIL, if there is no entry in the memo table for the given rule-
position pair.

The APPLY-RULE procedure (see Figure 1), used in every rule
application, ensures that no rule is ever evaluated more than once
at a given position. When rule R is applied at position P, APPLY-
RULE consults the memo table. If the memo table indicates that
R was previously applied at P, the appropriate parse tree node is
returned, and the parser’s current position is updated accordingly.
Otherwise, APPLY-RULE evaluates the rule, stores the result in the
memo table, and returns the corresponding parse tree node.

By using the memo table as shown in this section, packrat
parsers are able to support backtracking and unlimited look-ahead
while guaranteeing linear parse times. In the next section, we
present modifications to the memo table and the APPLY-RULE pro-
cedure that make it possible for packrat parsers to support left re-
cursion.

3. Adding Support for Left Recursion
In Section 1, we showed informally that the original version of the
expr rule,

expr ::= <expr> "-" <num> / <num>

causes packrat parsers to go into infinite recursion. We now revisit
the same example, this time from Section 2’s more detailed point
of view.

Consider what happens when expr is applied to the input
“1-2-3”. Since the parser’s current position is initially 0, this appli-
cation is encoded as APPLY-RULE(expr,0). APPLY-RULE, shown
in Figure 1, begins by searching the parser’s memo table for the
result of expr at position 0. The memo table is initially empty, and
thus MEMO(expr,0) evaluates to NIL, indicating that expr has not
yet been used at position 0. This leads APPLY-RULE to evaluate the
body of the expr rule, which is made up of two choices. The first
choice begins with <expr>, which, since the parser’s current posi-
tion is still 0, is encoded as the familiar APPLY-RULE(expr,0). At
this point, the memo table remains unchanged and thus we are back

1 Failures are also memoized in order to avoid doing unnecessary work
when backtracking occurs.

APPLY-RULE(R,P)
let m = MEMO(R,P)
if m = NIL

then m← new MEMOENTRY(FAIL,P) *
MEMO(R,P)← m *
let ans = EVAL(R.body)
m.ans← ans *
m.pos← Pos *
return ans

else Pos← m.pos
return m.ans

Figure 2. Avoiding non-termination by making left-recursive ap-
plications fail. (Lines marked with * are either new or have changed
since the previous version.)

exactly where we started! The parser is doomed to repeat the same
steps forever, or more precisely, until the computer eventually runs
out of stack space.

The rest of this section presents a solution to this problem. First,
we modify the algorithm to make left-recursive applications fail,
in order to avoid infinite loops. We then build on this extension
to properly support direct left recursion. Extending this idea to
support indirect left recursion is conceptually straightforward; we
present the intuition for this in Section 3.3. Finally, Section 3.4
focuses on the operational details of this extension.

3.1 Avoiding Infinite Recursion in Left-Recursive Rules
A simple way to avoid infinite recursion is for APPLY-RULE to
store a result of FAIL in the memo table before it evaluates the body
of a rule, as shown in Figure 2. This has the effect of making all
left-recursive applications (both direct and indirect) fail.

Consider what happens when expr is applied to the input
“1-2-3” using the new version of APPLY-RULE. Once again this
application is encoded as APPLY-RULE(expr,0). APPLY-RULE
first updates the memo table with a result of FAIL for expr at po-
sition 0, then goes on to evaluate the rule’s body, starting with its
first choice. The first choice begins with an application of expr,
which, because the current position is still 0, is also encoded as
APPLY-RULE(expr,0). This time, however, APPLY-RULE will find
a result in the memo table, and thus will not evaluate the body of
the rule. And because that result is FAIL, the current choice will be
aborted. The parser will then move on to the second choice, <num>,
which will succeed after consuming the “1”, and leave the rest of
the input, “-2-3”, unprocessed.

3.2 Supporting Direct Left Recursion
While this is clearly not expr’s intended behavior, the modified
APPLY-RULE procedure shown in Figure 2 was a step in the right
direction. Consider the side-effects of our application of expr at
position 0:

1. The parser’s current position was updated to 1, and

2. The parser’s memo table was updated with a mapping from
(expr, 0) to (expr→num→1, 1).

The parse shown above avoided all left-recursive terms; we call it
the seed parse.

Now, suppose we backtrack to position 0 and evalu-
ate expr’s body one more time. Note that unlike evaluating
APPLY-RULE(expr,0), which would simply retrieve the previ-
ous result stored in the memo table, evaluating the body of this
rule (which we denote in pseudo-code as EVAL(expr.body)) will

GROW-LR(R,P,M,H)
... � line A
while TRUE

do
Pos← P
... � line B
let ans = EVAL(R.body)
if ans = FAIL or Pos≤M.pos

then break
M.ans← ans
M.pos← Pos

... � line C
Pos←M.pos
return M.ans

Figure 3. GROW-LR: support for direct left recursion.

sidestep one level of memoization and begin to evaluate each of its
choices. The first choice,

<expr> "-" <num>

begins with a left-recursive application, just like before. This time,
however, that application succeeds because the memo table now
contains the seed parse. Next, the terms "-" and <num> success-
fully match and consume the “-” and “2” on the input, respectively.
If we update the memo table with the new answer and repeat these
steps one more time, we will have parsed “1-2-3”, the entire input
stream!

We refer to this iterative process as growing the seed; Figure 3
shows GROW-LR, which implements the seed-growing algorithm.
GROW-LR tries to grow the parse of rule R at position P, given
the seed parse in the MEMOENTRY M.2 Note that each time the
rule’s body is evaluated, the parser must backtrack to P; this is
accomplished with the statement “Pos ← P”. At the start of each
iteration, M contains the last successful result of the left recursion.
The loop’s terminating condition, “ans = FAIL or Pos ≤ M.pos”,
detects that no progress was made as a result of evaluating the rule’s
body. Once this condition is satisfied, the parser’s current position
is updated to the one associated with the last successful result.

GROW-LR can be used to compute the result of a left-recursive
application. Before we can use it, however, we must be able to
detect when a left recursion has occurred. We do this by introducing
a new data type, LR, and modifying MEMOENTRY so that LRs
may be stored in ans,

LR: (detected: BOOLEAN)
MEMOENTRY : (ans : AST or LR, pos : POSITION)

and modifying APPLY-RULE as shown in Figure 4.
To detect left-recursive applications, APPLY-RULE memoizes

an LR with detected = FALSE before evaluating the body of the
rule. A left-recursive application of the same rule will cause its
associated LR’s detected field to be set to TRUE, and yield a result
of FAIL. When an application is found to be left-recursive and it has
a successful seed parse, GROW-LR is invoked in order to grow the
seed into the rule’s final result.

The modifications shown in Figures 3 and 4 enable packrat
parsers to support direct left recursion without the need for left
recursion elimination transformations. This includes nested direct
left recursion, such as

2 Lines A, B, and C, and the argument H can be ignored at this point.

APPLY-RULE(R,P)
let m = MEMO(R,P)
if m = NIL

then let lr = new LR(FALSE) *
m← new MEMOENTRY(lr,P) *
MEMO(R,P)← m
let ans = EVAL(R.body)
m.ans← ans
m.pos← Pos
if lr.detected and ans 6= FAIL *

then return GROW-LR(R,P,m, NIL) *
else return ans *

else Pos← m.pos
if m.ans is LR *

then m.ans.detected← TRUE *
return FAIL *

else return m.ans *

Figure 4. Detecting left recursion and growing the seed with
GROW-LR. (Lines marked with * are either new or have changed
since the previous version.)

term ::= <term> "+" <fact>
/ <term> "-" <fact>
/ <fact>

fact ::= <fact> "*" <num>
/ <fact> "/" <num>
/ <num>

In the remainder of this section, we will present additional mod-
ifications that will enable our parser to also support indirect left
recursion.

3.3 Getting Ready For Indirect Left Recursion
Recall the following grammar, taken from the introduction,

x ::= <expr>
expr ::= <x> "-" <num> / <num>

and consider what happens when x is applied to the input “4-3” us-
ing the new version of APPLY-RULE given in the previous section.
First, the x rule is detected to be left-recursive with a seed parse of
x→expr→num→4. GROW-LR then evaluates x’s body once again
to try to grow the seed. At this point, the memo table already has
an answer for expr, namely expr→num→4; this causes the second
evaluation of x to yield a parse identical to the seed parse. Because
the last evaluation of x consumed no more input than the seed parse,
the loop in GROW-LR terminates and the seed parse becomes the
final result. This is clearly not the behavior we wanted.

The example above shows that the modifications for supporting
left recursion described in the previous section are overly simplis-
tic. GROW-LR repeatedly evaluates a single rule in order to grow
the seed parse, which is not sufficient when more than one rule is
involved in a left recursion.

We shall now introduce a few concepts that will play a key role
in the next and final set of modifications to our parser. The first of
these concepts is that of a rule invocation stack. Before a rule is
evaluated, it is pushed onto the parser’s rule invocation stack, only
to be popped off the stack once it has finished computing a result.
In Figure 5, (A) depicts the rule invocation stack just after the x
rule invokes expr.

An invocation of rule R is left-recursive if R is already on the
rule invocation stack, and the parser’s position has not changed
since that first invocation. In the example above, the invocation of x

(A) (B) (C) (D)

x

expr expr

x

expr @ x

x, {expr}

expr @ x

x, {expr}

Figure 5. The rule invocation stack, shown at various stages during
a left-recursive application.

by expr, shown in (B), is left-recursive. Left-recursive invocations
form a loop in the rule invocation stack. We refer to the rule that
started that loop as the head rule of the left recursion, and to the
other rules in the loop as being involved in that left recursion. In
(C), x’s thicker border denotes that it is the head of a left recursion,
and {expr}, inside the x node, represents the set of rules involved
in that left recursion. The expr node, now labeled “expr @ x”,
indicates that expr is involved in a left recursion whose head rule
is x.

We can use this information to handle the invocation of expr
specially while growing x’s seed parse. More specifically, we can
force expr’s body to be re-evaluated, ignoring the rule’s previously
memoized result. In general, when growing a left recursion result,
we bypass the memo table and re-evaluate the body of any rule
involved in the left recursion. This is the intuition for the final set of
modifications to our parser, which are presented in the next section.

3.4 Adding Support for Indirect Left Recursion
The final version of the APPLY-RULE procedure is shown in Fig-
ure 6. It has been modified in order to maintain a rule invocation
stack as described above. The stack is represented by the LR data
type, which we have modified to look as follows:

LR : (seed : AST,rule : RULE,head : HEAD,next : LR)

The rule invocation stack is kept in the global variable LRStack, of
type LR, and is represented as a linked list, using LR’s next field.

LR’s seed field holds the initial parse found for the associated
rule, which is stored in the rule field. In place of LR’s old detected
field, we now have the head field which, for a left-recursive invo-
cation, holds information pertinent to the left recursion (head is set
to NIL for non-left-recursive invocations). The HEAD data type,

HEAD : (rule : RULE, involvedSet,evalSet : SET of RULE)

contains the head rule of the left recursion (rule), and the following
two sets of rules:

• involvedSet, for the rules involved in the left recursion, and
• evalSet, which holds the subset of the involved rules that may

still be evaluated during the current growth cycle.

These data structures are used to represent the information depicted
in Figure 5.

Our parser must be able to determine whether left recursion
growth is in progress, and if so, which head rule is being grown.
Because only one left recursion can be grown at a time for any
given position, a global variable, HEADS, is used to map a position
to the HEAD of the left recursion which is currently being grown:

HEADS : POSITION→ HEAD

HEADS is NIL at any position where left recursion growth is not
underway.

The task of examining the rule invocation stack to find the
head rule and its involved rule set is performed by the SETUP-
LR procedure, shown in Figure 7.3 In our example, SETUP-LR
is invoked when the stack is at stage (B), in Figure 5, and leaves the
stack as shown in stage (C).

GROW-LR, shown in Figure 3, must be modified to use the head
rule and its involved rule set. Left recursion growth starts by chang-
ing Line A to

HEADS(P)← H

which indicates that left recursion growth is in progress. For each
cycle of growth, the involved rules are given a fresh opportunity for
evaluation. This is implemented by changing Line B to

H.evalSet← COPY(H.involvedSet)

In our example, this will cause expr to be included in the set of
rules which will be re-evaluated if reached. Finally, when left re-
cursion growth is completed, the head at the left recursion position
must be removed. To accomplish this, Line C is changed to

HEADS(P)← NIL

When a rule is applied, APPLY-RULE now invokes the RECALL
procedure, shown in Figure 9, in order to retrieve previous parse
results. In addition to fetching memoized results from the memo
table, RECALL ensures that involved rules are evaluated during the
growth phase. RECALL also prevents rules that were not previously
evaluated as part of the left recursion seed construction from being
parsed during the growth phase. This preserves the behavior that is
expected of a Parsing Expression Grammar (PEG), namely that the
first successful parse becomes the result of a rule.

Note that APPLY-RULE now invokes LR-ANSWER (see Fig-
ure 8), not GROW-LR, when it detects left recursion. If the current
rule is the head of the left recursion, LR-ANSWER invokes GROW-
LR just as we did before. Otherwise, the current rule is involved
in the left recursion and must defer to the head rule to grow any
left recursive parse, and pass its current parse to participate in the
construction of a seed parse.

With these modifications, our parser supports both direct and
indirect left recursion.

4. Case Study: Parsing Java’s Primary
Expressions

To validate our mechanism for supporting left recursion, we modi-
fied two existing packrat parser implementations,

• Context-free Attributed Transformations (CAT), a parser gener-
ator that supports PEGs as well as CFGs, and
• the back-end of the parsing and pattern-matching language

OMeta [11]

to use the new APPLY-RULE procedure described in the previ-
ous section. We also constructed a grammar that closely mirrors
Java’s Primary rule, as found in chapter 15 of the Java Language
Specification [5]. Because of its heavily mutually left-recursive na-
ture, Primary cannot be supported directly by conventional packrat
parsers [8].

Our process for composing this grammar, shown in Figure 10,
started with a careful examination of the grammar of Java ex-
pressions. We then identified all other rules that are mutually left-
recursive with Primary. All such rules, namely

3 There are more efficient ways to implement SETUP-LR which avoid
walking the stack; we chose to include this one because it is easier to
understand.

APPLY-RULE(R,P)
let m = RECALL(R,P) *
if m = NIL

then � Create a new LR and push it onto the rule
� invocation stack.
let lr = new LR(FAIL,R, NIL,LRStack) *
LRStack← lr *
� Memoize lr, then evaluate R.
m← new MEMOENTRY(lr,P)
MEMO(R,P)← m
let ans = EVAL(R.body)
� Pop lr off the rule invocation stack.
LRStack← LRStack.next *
m.pos← Pos
if lr.head 6= NIL *

then lr.seed← ans *
return LR-ANSWER(R,P,m) *

else m.ans← ans *
return ans

else Pos← m.pos
if m.ans is LR

then SETUP-LR(R,m.ans) *
return m.ans.seed *

else return m.ans

Figure 6. The final version of APPLY-RULE. (Lines marked with
* are either new or have changed since the previous version.)

SETUP-LR(R,L)
if L.head = NIL

then L.head← new HEAD(R,{},{})
let s = LRStack
while s.head 6= L.head

do s.head← L.head
L.head.involvedSet← L.head.involvedSet ∪{s.rule}
s← s.next

Figure 7. The SETUP-LR procedure.

LR-ANSWER(R,P,M)
let h = M.ans.head
if h.rule 6= R

then return M.ans.seed
else M.ans←M.ans.seed

if M.ans = FAIL
then return FAIL
else return GROW-LR(R,P,M,h)

Figure 8. The LR-ANSWER procedure.

RECALL(R,P)
let m = MEMO(R,P)
let h = HEADS(P)
� If not growing a seed parse, just return what is stored
� in the memo table.
if h = NIL

then return m
� Do not evaluate any rule that is not involved in this
� left recursion.
if m = NIL and R /∈ {h.head}∪h.involvedSet

then return new MEMOENTRY(FAIL,P)
� Allow involved rules to be evaluated, but only once,
� during a seed-growing iteration.
if R ∈ h.evalSet

then h.evalSet← h.evalSet \{R}
let ans = EVAL(R.body)
m.ans← ans
m.pos← Pos

return m

Figure 9. The RECALL procedure.

• Primary,
• PrimaryNoNewArray,
• ClassInstanceCreationExpression,
• MethodInvocation,
• FieldAccess, and
• ArrayAccess

are included in our grammar, as are “stubs” for the other rules they
reference (ClassName, InterfaceTypeName, Identifier, Method-
Name, ExpressionName, and Expression).

Next, we removed some of the uninteresting (i.e., non-left-
recursive) choices from these rules, and ordered the remaining
choices so that the rules would behave correctly when used in
a packrat parser. For example, since the method invocation ex-
pression “this.m()” has a prefix of “this.m”, which is also a
valid field access expression, the PrimaryNoNewArray rule must
try MethodInvocation before trying FieldAccess.

We then encoded the resulting grammar in the syntax accepted
by the Pappy packrat parser generator [1]. Just as we expected,
Pappy was unable to compile this grammar and displayed
the error message “Illegal left recursion: Primary ->
PrimaryNoNewArray -> ClassInstanceCreationExpression
-> Primary”.

Lastly, we encoded the same grammar in the syntax accepted by
CAT and OMeta. The resulting parsers exhibit the correct behavior,
as shown in Table 1.

5. Performance
A packrat parser’s guarantee of linear parse times is based on its
ability to compute the result of any single rule application in con-
stant time. Our iterative process for growing the seed parse of a left-
recursive application violates this assumption, thus making it pos-
sible for some left-recursive grammars to yield super-linear parse
times. As an example, the grammar

start ::= <ones> "2" / "1" <start> / ε

ones ::= <ones> "1" / "1"

accepts strings of zero or more “1”s in O(n2) time. The same
inefficiency will arise for any grammar that causes the parser to

Figure 11. RR-ORIG shows the performance characteristics of rr
in a traditional packrat parser implementation. RR-MOD and LR-
MOD show the performance characteristics of rr and lr, respec-
tively, in an implementation that was modified as described in Sec-
tion 3.

backtrack to the middle of a previously computed left-recursive
parse and then re-apply the same left-recursive rule. Fortunately,
this problem—which is analogous to that of Ford’s iterative
combinators—does not manifest itself in practical grammars [1].

In order to gauge the expected performance of packrat parsers
modified as described in this paper, we constructed the following
two rules:

rr ::= "1" <rr> / "1"
lr ::= <lr> "1" / "1"

The first rule, rr, is right-recursive, and the second, lr, is left-
recursive. Both recognize the same language, i.e., a string of one
or more “1”s, and while the parse trees generated by these rules
have different associativities, they have the same size.

We used these rules to recognize strings with lengths ranging
from 1,000 to 10,000, in increments of 1,000. The results of this
experiment are shown in Figure 11. The rr rule was first timed
using a “vanilla” packrat parser implementation (RR-ORIG), and
then using a version of the same implementation that was modified
as described in Section 3 (RR-MOD). The lr rule was only timed
using the modified implementation (LR-MOD), since left recursion
is not supported in our “vanilla” implementation.

The following conclusions can be drawn from this experiment:

• Our modifications to support left recursion do not intro-
duce significant overhead for non-left-recursive rules. Al-
though the recognizing times for RR-MOD were consistently
slower than those for RR-ORIG, the difference was rather small.
Furthermore, RR-MOD and RR-ORIG appear to have the same
slope.
• The modified packrat parser implementation supports typ-

ical uses of left recursion in linear time, as shown by LR-
MOD.
• Using left recursion can actually improve parse times. The

results of LR-MOD were consistently better than those of RR-
MOD and RR-ORIG. More importantly, LR-MOD’s gentler
slope tells us that it will scale much better than the others on
larger input strings. This difference in performance is likely due
to the fact that left recursion uses only a constant amount of
stack space, while right recursion causes the stack to grow lin-
early with the size of the input.

In order to measure the effect of indirect left recursion on parse
times, we constructed three more versions of the lr rule. The first,

Input String Parse Tree (in s-expression form)
“this” this
“this.x” (field-access this x)
“this.x.y” (field-access (field-access this x) y)
“this.x.m()” (method-invocation (field-access this x) m)
“x[i][j].y” (field-access (array-access (array-access x i) j) y)

Table 1. Some Java Primary expressions and their corresponding parse trees, as generated by a packrat parser modified as proposed in
Section 3. The head of an s-expression denotes the type of the AST node.

Primary ::= <PrimaryNoNewArray>

PrimaryNoNewArray ::= <ClassInstanceCreationExpression>
/ <MethodInvocation>
/ <FieldAccess>
/ <ArrayAccess>
/ this

ClassInstanceCreationExpression ::= new <ClassOrInterfaceType> ()
/ <Primary> . new <Identifier> ()

MethodInvocation ::= <Primary> . <Identifier> ()
/ <MethodName> ()

FieldAccess ::= <Primary> . <Identifier>
/ super . <Identifier>

ArrayAccess ::= <Primary> [<Expression>]
/ <ExpressionName> [<Expression>]

ClassOrInterfaceType ::= <ClassName> / <InterfaceTypeName>

ClassName ::= C / D

InterfaceTypeName ::= I / J

Identifier ::= x / y / <ClassOrInterfaceType>

MethodName ::= m / n

ExpressionName ::= <Identifier>

Expression ::= i / j

Figure 10. Java’s Primary expressions.

lr1 ::= <x> "1" / "1"
x ::= <lr1>

is indirectly left-recursive “one rule deep” (lr, which is directly
left-recursive, may be considered to be indirectly left-recursive zero
rules deep). The two other rules, lr2 and lr3 (not shown), are
indirectly left-recursive two and three rules deep, respectively.

Figure 12 shows the timing results for the new rules, in addition
to the original lr rule. These results indicate that adding simple
indirection to left-recursive rules does not have a significant effect
on parse times. We expect that more complex instances of indirect
left recursion found in real-world grammars, like Java’s Primary
rule, will exhibit steeper, but still linear, input length vs. parse time
curves (this should be attributed to the complexity of the grammar,
and not its use of left recursion).

6. Related Work
As discussed in Section 1, some packrat parser implementations,
including Pappy [1] and Rats! [6], support directly left-recursive
rules by transforming them into equivalent non-left-recursive rules.
Unfortunately, because neither of these implementations supports
mutually left-recursive rules, implementing parsers for grammars

Figure 12. The effect of indirect left recursion on parse times.

containing such rules (such as Java’s) using these systems is not
trivial. The programmer must carefully analyze the grammar and
rewrite certain rules, which can be tricky. And because the resulting
parser is no longer obviously equivalent to the grammar for which

it was written, it is difficult to be certain that it does indeed parse
the language for which it was intended.

While it may be possible to adapt the “transformational ap-
proach” of Pappy and Rats! to handle mutual left recursion by per-
forming a global analysis on the grammar,

• the presence of syntactic and semantic predicate terms may
complicate this task significantly, and
• such a global analysis is not a good fit for modular parsing

frameworks such as Rats!, in which rules may be overridden
in “sub-parsers”.

The approach described here works seamlessly with syntactic and
semantic predicates, as well as modular parsing. In fact, our imple-
mentation of OMeta [11], an object-oriented language for parsing
and pattern-matching which (like Rats!) allows rules to be overrid-
den, uses the mechanisms described in this paper.

In [4], Frost and Hafiz present a technique for supporting left
recursion in top-down parsers that involves limiting the depth of the
(otherwise) infinite recursion that arises from left-recursive rules
to the length of the remaining input plus 1. While their technique
is applicable to any kind of top-down parser (including packrat
parsers), it cannot be used when the length of the input stream is
unknown, as is the case with interactive input (e.g., read-eval-print
loops and network sockets). While the approach presented here
does not have this limitation and is significantly more efficient, its
need to interact with the memo table makes it applicable only to
packrat parsers.

In [7], Johnson describes a technique based on memoization
and Continuation-Passing Style (CPS) for implementing top-down
parsers that support left recursion and polynomial parse times. This
technique was developed for CFGs and relies heavily on the non-
determinism of the CFG choice operator; for this reason, we believe
that it would be difficult (if at all possible) to adapt it for use in
packrat parser implementations, where the ordering of the choices
is significant.

Jamie Douglass, one of the authors of this paper, had previously
developed a memoization-based technique for supporting left re-
cursion in an earlier version of CAT which only supported CFG
rules. That technique’s memoization mechanism was restricted to
only the head and involved rules, and used only while growing a
seed parse.

7. Conclusions and Future Work
We have described a modification to the memoization mechanism
used by packrat parser implementations that enables them to sup-
port both direct and indirect (or mutual) left recursion. This modi-
fication obviates the need for left recursion elimination transforma-
tions, and supports typical uses of left recursion without sacrificing
linear parse times.

We have applied our modification to the packrat parser im-
plementations of the CAT framework and OMeta, a parsing and
pattern-matching language. This enabled both of these systems to
support the heavily left-recursive portion of the Java grammar dis-
cussed in Section 4.

One of the anonymous reviewers noted that the compelling
simplicity of packrat parsing is “to a large extent lost in the effort
to support indirect left recursion.” We, like this reviewer, believe
that the final version of the algorithm presented in Section 3 can be
simplified, and plan to do so in future work.

Packrat parsing was originally developed by Bryan Ford to
support PEGs [3]. By extending packrat parsers with support for
left recursion, we have also extended the class of grammars they
are able to parse (which is now a superset of PEGs). Therefore,
it may be interesting to develop a formalism for this new class of

grammars that can serve as the theoretical foundation for this new
style of packrat parsing.

8. Acknowledgments
Thanks to Stephen Murrell, Yoshiki Ohshima, Tom Bergan, Dave
Herman, Richard Cobbe, and the anonymous reviewers for useful
feedback on this work.

References
[1] Bryan Ford. Packrat Parsing: a practical linear-time algorithm with

backtracking. Master’s thesis, Massachusetts Institute of Technology,
September 2002.

[2] Bryan Ford. Packrat Parsing: Simple, Powerful, Lazy, Linear Time
(functional pearl). In ICFP ’02: Proceedings of the seventh ACM
SIGPLAN International Conference on Functional Programming,
pages 36–47, New York, NY, USA, 2002. ACM Press.

[3] Bryan Ford. Parsing Expression Grammars: a Recognition-Based
Syntactic Foundation. In POPL ’04: Proceedings of the 31st
ACM SIGPLAN-SIGACT symposium on Principles of Programming
Languages, pages 111–122, New York, NY, USA, 2004. ACM Press.

[4] Richard A. Frost and Rahmatullah Hafiz. A new top-down parsing
algorithm to accommodate ambiguity and left recursion in polynomial
time. SIGPLAN Notices, 41(5):46–54, 2006.

[5] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java
Language Specification, Third Edition. Addison-Wesley, 2005.

[6] Robert Grimm. Better Extensibility Through Modular Syntax. In
PLDI ’06: Proceedings of the 2006 ACM SIGPLAN conference on
Programming Language Design and Implementation, pages 38–51,
New York, NY, USA, 2006. ACM Press.

[7] Mark Johnson. Memoization in top-down parsing. Computational
Linguistics, 21(3):405–417, 1995.

[8] Roman Redziejowski. Parsing Expression Grammar as a primitive
recursive-descent parser with backtracking. In G. Lindemann and
H. Schlingloff, editors, Proceedings of the CS&P’2006 Workshop,
volume 3 of Informatik-Bericht Nr. 206, pages 304–315. Humboldt-
Universität zu Berlin, 2006. To appear in Fundamenta Informaticae.

[9] Eric Van Wyk and August Schwerdfeger. Context-Aware Scanning
for Parsing Extensible Languages. In Intl. Conf. on Generative
Programming and Component Engineering, GPCE 2007. ACM Press,
October 2007.

[10] Eelco Visser. Scannerless Generalized-LR Parsing. Technical Report
P9707, Programming Research Group, University of Amsterdam.

[11] Alessandro Warth and Ian Piumarta. OMeta: an Object-Oriented
Language for Pattern-Matching. In OOPSLA ’07: Companion to the
22nd ACM SIGPLAN conference on Object-Oriented Programming
Systems, Languages, and Applications, New York, NY, USA, 2007.
ACM Press.

